3.65 \(\int \frac{x^2}{\sqrt{a+c x^2} (d+e x+f x^2)} \, dx\)

Optimal. Leaf size=344 \[ -\frac{\left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right ) \tanh ^{-1}\left (\frac{2 a f-c x \left (e-\sqrt{e^2-4 d f}\right )}{\sqrt{2} \sqrt{a+c x^2} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{2} f \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}-\frac{\left (2 d f-e \left (\sqrt{e^2-4 d f}+e\right )\right ) \tanh ^{-1}\left (\frac{2 a f-c x \left (\sqrt{e^2-4 d f}+e\right )}{\sqrt{2} \sqrt{a+c x^2} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{2} f \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{\sqrt{c} f} \]

[Out]

ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]]/(Sqrt[c]*f) - ((e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])*ArcTanh[(2*a*f - c*(e
- Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqr
t[2]*f*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]) - ((2*d*f - e*(e + Sqrt[e^2 -
4*d*f]))*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4
*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*f*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])])

________________________________________________________________________________________

Rubi [A]  time = 0.540944, antiderivative size = 344, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.185, Rules used = {1081, 217, 206, 1034, 725} \[ -\frac{\left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right ) \tanh ^{-1}\left (\frac{2 a f-c x \left (e-\sqrt{e^2-4 d f}\right )}{\sqrt{2} \sqrt{a+c x^2} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{2} f \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}-\frac{\left (2 d f-e \left (\sqrt{e^2-4 d f}+e\right )\right ) \tanh ^{-1}\left (\frac{2 a f-c x \left (\sqrt{e^2-4 d f}+e\right )}{\sqrt{2} \sqrt{a+c x^2} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{2} f \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{\sqrt{c} f} \]

Antiderivative was successfully verified.

[In]

Int[x^2/(Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]]/(Sqrt[c]*f) - ((e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])*ArcTanh[(2*a*f - c*(e
- Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqr
t[2]*f*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]) - ((2*d*f - e*(e + Sqrt[e^2 -
4*d*f]))*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4
*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*f*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])])

Rule 1081

Int[((A_.) + (C_.)*(x_)^2)/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (f_.)*(x_)^2]), x_Symbol] :> Dist[
C/c, Int[1/Sqrt[d + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C - b*C*x)/((a + b*x + c*x^2)*Sqrt[d + f*x^2]), x]
, x] /; FreeQ[{a, b, c, d, f, A, C}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 1034

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
= Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Dist[(2*c
*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f, g, h}, x] && NeQ[
b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rubi steps

\begin{align*} \int \frac{x^2}{\sqrt{a+c x^2} \left (d+e x+f x^2\right )} \, dx &=\frac{\int \frac{1}{\sqrt{a+c x^2}} \, dx}{f}+\frac{\int \frac{-d-e x}{\sqrt{a+c x^2} \left (d+e x+f x^2\right )} \, dx}{f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{1-c x^2} \, dx,x,\frac{x}{\sqrt{a+c x^2}}\right )}{f}+\frac{\left (e^2-2 d f-e \sqrt{e^2-4 d f}\right ) \int \frac{1}{\left (e-\sqrt{e^2-4 d f}+2 f x\right ) \sqrt{a+c x^2}} \, dx}{f \sqrt{e^2-4 d f}}-\frac{\left (-2 d f+e \left (e+\sqrt{e^2-4 d f}\right )\right ) \int \frac{1}{\left (e+\sqrt{e^2-4 d f}+2 f x\right ) \sqrt{a+c x^2}} \, dx}{f \sqrt{e^2-4 d f}}\\ &=\frac{\tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{\sqrt{c} f}-\frac{\left (e^2-2 d f-e \sqrt{e^2-4 d f}\right ) \operatorname{Subst}\left (\int \frac{1}{4 a f^2+c \left (e-\sqrt{e^2-4 d f}\right )^2-x^2} \, dx,x,\frac{2 a f-c \left (e-\sqrt{e^2-4 d f}\right ) x}{\sqrt{a+c x^2}}\right )}{f \sqrt{e^2-4 d f}}+\frac{\left (-2 d f+e \left (e+\sqrt{e^2-4 d f}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 a f^2+c \left (e+\sqrt{e^2-4 d f}\right )^2-x^2} \, dx,x,\frac{2 a f-c \left (e+\sqrt{e^2-4 d f}\right ) x}{\sqrt{a+c x^2}}\right )}{f \sqrt{e^2-4 d f}}\\ &=\frac{\tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{\sqrt{c} f}-\frac{\left (e^2-2 d f-e \sqrt{e^2-4 d f}\right ) \tanh ^{-1}\left (\frac{2 a f-c \left (e-\sqrt{e^2-4 d f}\right ) x}{\sqrt{2} \sqrt{2 a f^2+c \left (e^2-2 d f-e \sqrt{e^2-4 d f}\right )} \sqrt{a+c x^2}}\right )}{\sqrt{2} f \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e^2-2 d f-e \sqrt{e^2-4 d f}\right )}}-\frac{\left (2 d f-e \left (e+\sqrt{e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac{2 a f-c \left (e+\sqrt{e^2-4 d f}\right ) x}{\sqrt{2} \sqrt{2 a f^2+c \left (e^2-2 d f+e \sqrt{e^2-4 d f}\right )} \sqrt{a+c x^2}}\right )}{\sqrt{2} f \sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e^2-2 d f+e \sqrt{e^2-4 d f}\right )}}\\ \end{align*}

Mathematica [A]  time = 0.732037, size = 334, normalized size = 0.97 \[ \frac{\frac{\sqrt{2} \left (e \sqrt{e^2-4 d f}+2 d f-e^2\right ) \tanh ^{-1}\left (\frac{2 a f+c x \left (\sqrt{e^2-4 d f}-e\right )}{\sqrt{a+c x^2} \sqrt{4 a f^2-2 c \left (e \sqrt{e^2-4 d f}+2 d f-e^2\right )}}\right )}{\sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (-e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}+\frac{\sqrt{2} \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right ) \tanh ^{-1}\left (\frac{2 a f-c x \left (\sqrt{e^2-4 d f}+e\right )}{\sqrt{a+c x^2} \sqrt{4 a f^2+2 c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt{e^2-4 d f} \sqrt{2 a f^2+c \left (e \sqrt{e^2-4 d f}-2 d f+e^2\right )}}+\frac{2 \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{\sqrt{c}}}{2 f} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/(Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

((2*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]])/Sqrt[c] + (Sqrt[2]*(-e^2 + 2*d*f + e*Sqrt[e^2 - 4*d*f])*ArcTanh[(2*a
*f + c*(-e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[4*a*f^2 - 2*c*(-e^2 + 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])]
)/(Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]) + (Sqrt[2]*(e^2 - 2*d*f + e*Sqrt[e
^2 - 4*d*f])*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[4*a*f^2 + 2*c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d
*f])]*Sqrt[a + c*x^2])])/(Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]))/(2*f)

________________________________________________________________________________________

Maple [B]  time = 0.269, size = 1796, normalized size = 5.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x)

[Out]

1/f*ln(x*c^(1/2)+(c*x^2+a)^(1/2))/c^(1/2)+1/2/f^2*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2
)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+
e^2)^(1/2))/f)+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e
^2)^(1/2))/f)^2*c-4*c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*
a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))*e+1/f/(-4*d*f+e^2)^(1/2)*2^(1/2)/((-(-4*d*
f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(
e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*
f+c*e^2)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e
^2)^(1/2))/f)+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))
*d-1/2/f^2/(-4*d*f+e^2)^(1/2)*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*
f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+1/2*2
^(1/2)*((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*
c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)
/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))*e^2+1/2/f^2*2^(1/2)/(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c
*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(
-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*
d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e
+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))*e-1/f/(-4*d*f+e^2)^(1/2)*2^(1/2)/(((-4*d
*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(
e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+
c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^
(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))*d+1/2
/f^2/(-4*d*f+e^2)^(1/2)*2^(1/2)/(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(
1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((
(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*
f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/
(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))*e^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{a + c x^{2}} \left (d + e x + f x^{2}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(f*x**2+e*x+d)/(c*x**2+a)**(1/2),x)

[Out]

Integral(x**2/(sqrt(a + c*x**2)*(d + e*x + f*x**2)), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

Timed out